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Motivation and Objective
Satellite measurements (retrievals) of surface soil moisture 
from the Soil Moisture Active Passive (SMAP) mission are 
subject to errors and cannot by themselves provide the 
space-time coverage that is often needed (for example, in 
forecast initialization applications).  A land data assimilation 
system can merge the SMAP soil moisture retrievals with 
information from land surface models and antecedent 
meteorological data, information that is spatio-temporally 
complete but likewise uncertain.  This merger yields the 
suite of SMAP Level 4 data assimilation products
(including root zone soil moisture and evapotranspiration).

For the design of the SMAP mission it is critical to 
understand just how uncertain the surface soil moisture 
retrievals can be while still achieving the science objectives 
of the mission.  Here, we present an Observing System 
Simulation Experiment (OSSE) that determines the 
contribution of surface soil moisture retrievals to the skill 
of land data assimilation products as a function of 
retrieval and land model skill (Reichle et al., 2008a).  

Approach: Fraternal Twin Experiment
1. Truth: “True” soil moisture fields and passive microwave brightness 
temperatures (L-band) are from a high-resolution (1 km) long-term (1981-
2000) integration of the TOPLATS land surface model over the Red-
Arkansas river basin, using high-quality meteorological forcing.

2. Observations: From the “true” brightness temperature fields, we 
simulate NR=12 different retrieval soil moisture data sets at a typical 
satellite footprint scale (36 km) and temporal resolution (at most once a 
day).  The retrieval data sets reflect various sources of uncertainty with 
different error structure and magnitude.

3. Land surface model: We use the NASA Catchment land surface model 
and construct NM=8 distinct modeling scenarios with different levels of 
errors in model parameters and forcing data.

4. Scaling and data assimilation: Each retrieval data set is scaled to the 
soil moisture climatology of each model scenario for bias removal and then 
assimilated into each model scenario with an adaptive Ensemble Kalman 
filter (EnKF) for a total of NR*NM=96 assimilation experiments.  The 
assimilation products are compared against the assumed “truth” to determine 
the error levels for contouring.

Figure 2:  

(a, b) Skill (R) and (c, d) skill 
improvement (ΔR) of 
assimilation product for surface 
(a, c) and (b, d) root zone soil 
moisture as a function of the 
(ordinate) model and (abscissa) 
retrieval skill.  

Skill is measured in terms of R 
(=anomaly time series correlation 
coefficient against truth).  Skill 
improvement is defined as skill 
of assimilation product minus 
skill of model estimates.  

Each plus sign indicates the result 
of one 19-year assimilation 
integration over the entire Red-
Arkansas domain.  

Also shown are results from 
Reichle et al. (2007) for (triangle) 
AMSR-E and (square) SMMR.

Model Error Calibration
Each assimilation experiment must achieve near-optimal 
performance – otherwise the information contributed by the 
retrievals cannot be compared across experiments. 

Performance depends on model and observation error 
parameters and can be diagnosed by the skill of the assimilation 
estimates (vs. truth) and by the variance of the normalized 
innovations.  We use an adaptive EnKF (Reichle et al., 2008b) to 
ensure that each assimilation experiment achieves near-optimal 
performance.

Results
The skill of the assimilation products generally increases with the skill of the model (Figure 2a, b).  
The skill of the assimilation products is more sensitive to model skill than to retrieval skill. 
Assimilation of soil moisture retrievals adds skill (relative to model product)*.  
The improvements in R through assimilation increase with increasing retrieval skill.
Even retrieval data sets of poor quality contribute some information to the assimilation product, 
particularly if model skill is modest. 
The OSSE results are consistent with numbers obtained from assimilation of AMSR-E and SMMR 
retrievals and validation against in-situ measurements.

Future Directions
Further improve model error calibration technique (through additional adaptive 
tuning).
Add more model scenarios to refine contour plots.
Include retrievals based on active (radar) measurements.

*Note: The skill of the assimilation estimates does not 
necessarily exceed the skill of the retrievals 
because: 

1. the assimilation system does not optimize R itself, 
2. nonlinearities pervade the system, 
3. the selection of model error parameters and the 

scaling algorithm are imperfect, 
4. differences exist in the layer depths for the 

assumed “truth” and the Catchment model, 
5. the data are averaged to daily values, and 
6. the ensemble size (N_ens=12) used in the EnKF is 

small.

Figure 1:  Flow diagram of the OSSE.
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Figure 3:  Skill 
improvement for 
monthly mean ET 
assimilation product. 
Abscissa, ordinate, 
and plus signs as in 
Figure 2.

AMSR-E (Δ):
ΔR=0.07     ΔR=0.06

SMMR ( ): 
ΔR=0.07     ΔR=0.03
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